题目内容

10.如图,在△ABC和△BCE中,∠CBE=30°,∠BEC=90°,将△BEC绕点C按顺时针方向旋转α(0°<α<180°),在旋转过程中,B的对应点为B1,E的对应点为E1,设直线B1E1与直线BE交于点F,与直线CB交于点Q,当△BPQ为等腰三角形时,α的大小是30°,75°或165°.

分析 根据旋转和等腰三角形的性质进行探究,结论是:存在α(30°和75°),使△BPQ为等腰三角形.如答图1、答图2和图3所示.

解答 解:存在α,使△BPQ为等腰三角形.
理由如下:经探究,得△BPQ∽△B1QC,
故当△BPQ为等腰三角形时,△B1QC也为等腰三角形.
(I)当QB=QP时(如答图1),

则QB1=QC,∴∠B1CQ=∠B1=30°,
即∠BCB1=30°,
∴α=30°;
(II)当BQ=BP时,则B1Q=B1C,
若点Q在线段B1E1的延长线上时(如答图2),

∵∠B1=30°,∴∠B1CQ=∠B1QC=75°,
即∠BCB1=75°,
∴α=75°;
若点Q在线段E1B1的延长线上时(如答图3),


∵∠B1=30°,∴∠B1CQ=∠B1QC=15°,
即∠BCB1=180°-∠B1CQ=180°-15°=165°,
∴α=165°.
综上所述,存在α=30°,75°或165°,使△BPQ为等腰三角形.
故答案为:30°,75°或165°.

点评 本题考查了旋转的性质以及运动型与几何变换综合题,难度较大.对存在型问题中,探究出符合题意的旋转角,并且做到不重不漏,是解题难点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网