题目内容
10.分析 根据旋转和等腰三角形的性质进行探究,结论是:存在α(30°和75°),使△BPQ为等腰三角形.如答图1、答图2和图3所示.
解答 解:存在α,使△BPQ为等腰三角形.
理由如下:经探究,得△BPQ∽△B1QC,
故当△BPQ为等腰三角形时,△B1QC也为等腰三角形.
(I)当QB=QP时(如答图1),![]()
则QB1=QC,∴∠B1CQ=∠B1=30°,
即∠BCB1=30°,
∴α=30°;
(II)当BQ=BP时,则B1Q=B1C,
若点Q在线段B1E1的延长线上时(如答图2),![]()
∵∠B1=30°,∴∠B1CQ=∠B1QC=75°,
即∠BCB1=75°,
∴α=75°;
若点Q在线段E1B1的延长线上时(如答图3),![]()
∵∠B1=30°,∴∠B1CQ=∠B1QC=15°,
即∠BCB1=180°-∠B1CQ=180°-15°=165°,
∴α=165°.
综上所述,存在α=30°,75°或165°,使△BPQ为等腰三角形.
故答案为:30°,75°或165°.
点评 本题考查了旋转的性质以及运动型与几何变换综合题,难度较大.对存在型问题中,探究出符合题意的旋转角,并且做到不重不漏,是解题难点.
练习册系列答案
相关题目