题目内容

9.在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD是∠BAC的平分线,若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是2.4.

分析 如图作CQ′⊥AB于Q′交AD于点P,作PQ⊥AC此时PC+PQ最短,利用面积法求出CQ′即可解决问题.

解答 解:如图,作CQ′⊥AB于Q′交AD于点P,作PQ⊥AC此时PC+PQ最短.
∵PQ⊥AC,PQ′⊥AB,AD平分∠CAB,
∴PQ=PQ′,
∴PQ+CP=PC+PQ′=CQ′
∴此时PC+PQ最短(垂线段最短).
在RT△ABC中,∵∠ACB=90°,AC=3,BC=4,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∵$\frac{1}{2}$•AC•BC=$\frac{1}{2}$•AB•CQ′,
∴CQ′=$\frac{AC•CB}{AB}$=$\frac{12}{5}$=2.4.
∴PC+PQ的最小值为2.4.
故答案为2.4.

点评 本题考查轴对称-最短问题、角平分线性质、勾股定理等知识,解题的关键是找到点P、Q的位置,灵活应用垂线段最短解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网