题目内容
6.分析 令x=1代入可判断①;由对称轴表达式的范围可判断②;由图象与x轴有两个交点可判断③;由开口方向及与x轴的交点可分别得出a、c的符号,可判断④.
解答 解:由图象可知当x=1时,y<0,
∴a+b+c<0,
故①不正确;
由图象可知0<-$\frac{b}{2a}$<1,
∴$\frac{b}{2a}$>-1,
又∵开口向上,
∴a>0,
∴b>-2a,
∴2a+b>0,
故②正确;
由图象可知二次函数与x轴有两个交点,
∴方程ax2+bx+c=0有两个不相等的实数根,
∴△>0,即b2-4ac>0,
故③正确;
由图象可知抛物线开口向上,与y轴的交点在x轴的下方,
∴a>0,c<0,
∴ac<0,
故④不正确;
综上可知正确的为②③,
故答案为:②③.
点评 本题主要考查二次函数的图象和性质,掌握二次函数的开口方向、对称轴、与x轴的交点等知识是解题的关键.
练习册系列答案
相关题目
16.已知x+y=-4,xy=2,则x2+y2的值( )
| A. | 10 | B. | 11 | C. | 12 | D. | 13 |
18.
如图,已知△APB和△APC是以AP所在的直线为对称轴的轴对称图形,若PA=PB,∠PAB=30°,则∠BPC的大小是( )
| A. | 110° | B. | 130° | C. | 120° | D. | 140° |
15.
如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,且AD⊥BC,则∠B的度数为( )
| A. | 15° | B. | 25° | C. | 35° | D. | 45° |