题目内容

12.已知关于x,y的方程组$\left\{\begin{array}{l}{x+y=3}\\{ax-by=5}\end{array}\right.$与$\left\{\begin{array}{l}{bx-2ay=1}\\{x-7=y}\end{array}\right.$同解,求$\frac{b}{a}$的值.

分析 根据题意得出方程组$\left\{\begin{array}{l}{x+y=3}\\{x-7=y}\end{array}\right.$,求出方程组的解,把x、y的值代入方程组$\left\{\begin{array}{l}{ax-by=5}\\{bx-2ay=1}\end{array}\right.$,得出关于ab的方程组,求出方程组的解即可.

解答 解:∵关于x,y的方程组$\left\{\begin{array}{l}{x+y=3}\\{ax-by=5}\end{array}\right.$与$\left\{\begin{array}{l}{bx-2ay=1}\\{x-7=y}\end{array}\right.$同解,
∴解方程组$\left\{\begin{array}{l}{x+y=3}\\{x-7=y}\end{array}\right.$,得:$\left\{\begin{array}{l}{x=5}\\{y=-2}\end{array}\right.$,
把x=5,y=-2代入方程组$\left\{\begin{array}{l}{ax-by=5}\\{bx-2ay=1}\end{array}\right.$,得:$\left\{\begin{array}{l}{5a+2b=5}\\{5b+4a=1}\end{array}\right.$,
解得:a=$\frac{23}{17}$,b=-$\frac{4}{5}$.
∴$\frac{b}{a}$=-$\frac{23}{15}$.

点评 本题考查了解二元一次方程组,二元一次方程组的解的应用,关键是能求出关于a、b的方程组.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网