题目内容

17.某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图所示.
(1)图中点P所表示的实际意义是当售价定为35元/件时,销售数量为300件;销售单价每提高1元时,销售量相应减少20件;
(2)请直接写出y与x之间的函数表达式y=-20x+1000;自变量x的取值范围为30≤x≤50;
(3)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少?

分析 (1)根据坐标系中点的坐标的意义,即可写出点P的实际意义,再根据“销售单价每提升一元的销售减少量=销售减少数量÷增加价钱”即可列式算出结论;
(2)设y与x之间的函数表达式为y=kx+b,根据图象上点的坐标利用待定系数法即可求出该函数表达式,令y=0求出x值,即可得出自变量x的取值范围;
(3)设第二个月的利润为w元,根据“利润=单个利润×销售数量”即可得出w关于x的函数关系式,利用配方法结合二次函数的性质即可解决最值问题.

解答 解:(1)图中点P所表示的实际意义是:当售价定为35元/件时,销售数量为300件;
第一个月的该商品的售价为:20×(1+50%)=30(元),
销售单价每提高1元时,销售量相应减少数量为:(400-300)÷(35-30)=20(件).
故答案为:当售价定为35元/件时,销售数量为300件;20.
(2)设y与x之间的函数表达式为y=kx+b,
将点(30,400)、(35,300)代入y=kx+b中,
得:$\left\{\begin{array}{l}{400=30k+b}\\{300=35k+b}\end{array}\right.$,$\left\{\begin{array}{l}{k=-20}\\{b=1000}\end{array}\right.$,
∴y与x之间的函数表达式为y=-20x+1000.
当y=0时,x=50,
∴自变量x的取值范围为30≤x≤50.
故答案为:y=-20x+1000;30≤x≤50.
(3)设第二个月的利润为w元,
由已知得:w=(x-20)y=(x-20)(-20x+1000)=-20x2+1400x-20000=-20(x-35)2+4500,
∵-20<0,
∴当x=35时,w取最大值,最大值为4500.
故第二个月的销售单价定为35元时,可获得最大利润,最大利润是4500元.

点评 本题考查了二次函数的应用、待定系数法求函数解析式以及二次函数的性质,解题的关键是:(1)熟悉坐标系中点的坐标的意义;(2)根据点的坐标利用待定系数法求出函数解析式;(3)根据二次函数的性质解决最值问题.本题属于中档题,难度不大,解决该题型题目时,根据函数图象上点的坐标利用待定系数法求出函数解析式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网