题目内容

5.如图,点E、F在函数y=$\frac{k}{x}$(x>0)的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:4,过点E作EP⊥y轴于P,已知△OEP的面积为2.
(1)求反比例函数的解析式;
(2)如果直线EF的解析式是y=-x+n,计算△OEF的面积.

分析 (1)作EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,根据反比例函数的比例系数的几何意义由△OEP的面积为2易得k=4.
(2)求得反比例函数解析式为y=$\frac{4}{x}$,再证明△BPE∽△BHF,利用相似比可得HF=4PE,根据反比例函数图象上点的坐标特征,设E点坐标为(t,$\frac{4}{t}$),则F点的坐标为(4t,$\frac{4}{4t}$),由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=2,所以S△OEF=S梯形ECDF,然后根据梯形面积公式计算.

解答 解:(1)作EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图,
∵△OEP的面积为2,
∴$\frac{1}{2}$|k|=2,
而k>0,
∴k=4,
∴反比例函数解析式为y=$\frac{4}{x}$,

(2)∵EP⊥y轴,FH⊥y轴,
∴EP∥FH,
∴△BPE∽△BHF,
∴$\frac{PE}{HF}$=$\frac{BE}{BF}$=$\frac{1}{4}$,即HF=4PE,
设E点坐标为(t,$\frac{4}{t}$),则F点的坐标为(4t,$\frac{4}{4t}$),
∵S△OEF+S△OFD=S△OEC+S梯形ECDF
而S△OFD=S△OEC=2,
∴S△OEF=S梯形ECDF=$\frac{1}{2}$($\frac{4}{4t}$+$\frac{4}{t}$)(4t-t)
=$\frac{15}{2}$.

点评 本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、反比例函数的比例系数的几何意义;会利用相似比确定线段之间的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网