题目内容
11.在△ABC中,AB=AC,∠ABC=∠ACB,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接BE.(1)如图1,当点D在线段BC上,
①如果∠BAC=90°,△ABD与△ACE全等吗?并求∠BCE度数;
②如果∠BAC=100°,直接写出∠BCE的度数.
(2)设∠BAC=α,∠BCE=β.
①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;
②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请在备用图上画出图形,直接写出你的结论.
分析 (1)①可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB=45°,即可解决问题.
②根据①中的结论代入解答即可;
(2)①证明△BAD≌△CAE,得到∠B=∠ACE,β=∠ABC+∠ACB,即可解决问题.
②证明△BAD≌△CAE,得到∠ABD=∠ACE,借助三角形外角性质即可解决问题.
解答 解:(1)如图1,∠BCE=90°,![]()
∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC.
即∠BAD=∠CAE.
在△ABD与△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB,
∴∠BCE=∠B+∠ACB,
又∵∠BAC=90°
∴∠BCE=90°,
②∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC.
即∠BAD=∠CAE.
在△ABD与△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB,
∴∠BCE=∠B+∠ACB,
又∵∠BAC=100°
∴∠BCE=80°.
(2)如图2,α+β=180°;理由如下:
∵∠BAC=∠DAE,
∴∠BAD=∠CAE;
在△BAD与△CAE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△BAD≌△CAE(SAS),
∴∠B=∠ACE,β=∠ABC+∠ACB,
∴α+β=180°.
(3)α=β.如图3,理由如下:
∵∠DAE=∠BAC,
∴∠DAB=∠EAC;
在△ADB与△AEC中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ADB≌△AEC(SAS),
∴∠ABD=∠ACE;
∵∠ABD=∠ACB+α,β=∠ACE-∠ACB,
∴β=∠ACB+α-∠ACB,
∴α=β.
点评 该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点.
(1)有理数乘以无理数一定是无理数;
(2)顺次联结等腰梯形各边中点所得的四边形是菱形;
(3)在同圆中,相等的弦所对的弧也相等;
(4)如果正九边形的半径为a,那么边心距为a•sin20°.
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
| A. | 9 | B. | 18 | C. | 9$\sqrt{3}$ | D. | 18$\sqrt{3}$ |
| A. | (-2)-3与23 | B. | (-2)-2与2-2 | C. | -33与(-$\frac{1}{3}$)3 | D. | (-3)-3与($\frac{1}{3}$)3 |