题目内容

如图,四边形ABCD是平行四边形,对角线AC、BD交于点O,过点O画直线EF分别交AD、BC于点E、F.求证:OE=OF.
考点:平行四边形的性质,全等三角形的判定与性质
专题:证明题
分析:由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,继而可利用ASA,判定△AOE≌△COF,继而证得OE=OF.
解答:证明:∵四边形ABCD是平行四边形,
∴AD∥BC,OA=OC,
∴∠OAE=∠OCF,
在△AOE和△COF中,
∠OAE=∠OCF
OA=OC
∠AOE=∠COF

∴△AOE≌△COF(ASA),
∴OE=OF.
点评:此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网