题目内容
5.分析 延长BE交AC于F,由已知条件可得△BAF是等腰三角形,由等腰三角形的性质可得BE=EF,又因为BD=CD是,所以DE是△BCF的中位线,由三角形中位线定理即可求出DE的长.
解答 解:延长BE交AC于F,
∵AE平分∠BAC
,BE⊥AE,
∴△BAF是等腰三角形,
∴BE=EF,AB=AF,
∵AB=5,
∴AF=5,
∵AC=7,
∴CF=AC-AF=7-5=2,
∵D为BC中点
∴BD=CD,
∴DE是△BCF的中位线,
∴DE=$\frac{1}{2}$CF=1.
点评 本题考查了三角形中位线定理以及等腰三角形的判定,解题的关键是正确作出辅助线,得到△BAF是等腰三角形.
练习册系列答案
相关题目
16.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是$\left\{\begin{array}{l}{3x+2y=19}\\{x+4y=23}\end{array}\right.$.类似地,图2所示的算筹图我们可以表述为( )
| A. | $\left\{\begin{array}{l}{2x+y=11}\\{4x+3y=27}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{2x+y=11}\\{4x+3y=22}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{3x+2y=19}\\{x+4y=23}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{2x+y=6}\\{4x+3y=27}\end{array}\right.$ |