题目内容
17.若$\widehat{AB}$=$\widehat{BC}$,则AB=BC,∠AOB=∠BOC;
若AB=BC,则$\widehat{AB}$=$\widehat{BC}$,∠AOB=∠BOC.
分析 直接根据圆心角、弧、弦的关系进行解答即可.
解答 解:在⊙O中,若∠AOB=∠BOC,则AB=BC,$\widehat{AB}$=$\widehat{BC}$;
若$\widehat{AB}$=$\widehat{BC}$,则AB=BC,∠AOB=∠BOC;
若AB=BC,则$\widehat{AB}$=$\widehat{BC}$,∠AOB=∠BOC.
故答案为:AB=BC,$\widehat{AB}$=$\widehat{BC}$;AB=BC,∠AOB=∠BOC;$\widehat{AB}$=$\widehat{BC}$,∠AOB=∠BOC.
点评 本题考查的是圆心角、弧、弦的关系,熟知在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等是解答此题的关键.
练习册系列答案
相关题目