题目内容

11.解方程组:
(1)$\left\{\begin{array}{l}x-2y=0\\ 2x+3y=21\end{array}\right.$
(2)$\left\{\begin{array}{l}5x-2y=4\\ \frac{x}{2}+\frac{y}{3}=2\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{x-2y=0①}\\{2x+3y=21②}\end{array}\right.$,
①×2-②得:-4y=-21,即y=3,
把y=3代入①得:x=6,
则方程组的解为$\left\{\begin{array}{l}{x=6}\\{y=3}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{5x-2y=4①}\\{3x+2y=12②}\end{array}\right.$,
①+②得:8x=16,即x=2,
把x=2代入①得:y=3,
则方程组的解为$\left\{\begin{array}{l}x=2\\ y=3\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网