题目内容
7.若正多边形的一个内角是120°,则这个正多边形的边数为( )| A. | 8 | B. | 7 | C. | 6 | D. | 5 |
分析 多边形的内角和可以表示成(n-2)•180°,因为所给多边形的每个内角均相等,故又可表示成120°n,列方程可求解.此题还可以由已知条件,求出这个多边形的外角,再利用多边形的外角和定理求解.
解答 解:设所求正n边形边数为n,
则120°n=(n-2)•180°,
解得n=6,
故选C.
点评 本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算是解答此题的关键.
练习册系列答案
相关题目
12.
在?ABCD中,过点D作对DE⊥AB于点E,点F在边CD上,CF=AE,连结AF,BF.
(1)求证:四边形BFDE是矩形.
(2)若CF=6,BF=8,DF=10,求证:AF是∠DAB的角平分线.
(1)求证:四边形BFDE是矩形.
(2)若CF=6,BF=8,DF=10,求证:AF是∠DAB的角平分线.
16.
如图,是一个半圆和抛物线的一部分围成的“鸭梨”,已知点A、B、C、D分别是“鸭梨”与坐标轴的交点,AB是半圆的直径,抛物线的解析式为y=2x2-2,则图中CD的长为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
17.下列分式方程有解的是( )
| A. | $\frac{1}{2x-3}$=0 | B. | $\frac{{x}^{2}+1}{x}$=0 | C. | $\frac{2x}{x-1}=\frac{x+1}{x-1}$ | D. | $\frac{1}{x-1}=1$ |