题目内容

16.如图,在?ABCD中,若M为BC边的中点,AM与BD交于点N,那么S△BMN:S?ABCD=(  )
A.1:12B.1:9C.1:8D.1:6

分析 根据平行四边形的性质得出AD=BC,AD∥BC,求出BC=2BM=AD,根据相似三角形的判定得出△AND∽△MNB,求出DN:BN=AD:BM=2:1,根据相似三角形的性质和三角形的面积公式求出S△ABN=2S△BMN,S△AND=4S△BMN,即可得出答案.

解答 解:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∵M为BC边的中点,
∴BC=2BM=AD,
∵AD∥BC,
∴△AND∽△MNB,
∴DN:BN=AD:BM=2:1,
∴$\frac{{S}_{△BMN}}{{S}_{△AND}}$=($\frac{1}{2}$)2=$\frac{1}{4}$,$\frac{{S}_{△ABN}}{{S}_{△BMN}}$=2,
∴S△ABN=2S△BMN,S△AND=4S△BMN
∴S平行四边形ABCD=2S△ABD=2(S△AND+S△ABN)=12S△BMN
即S△BMN:S?ABCD=1:12,
故选A.

点评 本题考查了平行四边形的性质,相似三角形的性质和判定的应用,能灵活运用定理进行变形是解此题的关键,注意:相似三角形的面积之比等于相似比的平方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网