题目内容

11.如图,在Rt△ABC中,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC,若点F是DE的中点,连接AF,则AF的长为(  )
A.3B.4C.5D.4$\sqrt{2}$

分析 先依据旋转的性质得到CE、CD的长,然后过点F作FG⊥AC,从而可证明FG是△ECD的中位线,从而可得到EG、FG的长,最后依据勾股定理可求得AF的长.

解答 解:如图所示:过点F作FG⊥AC.

∵由旋转的性质可知:CE=BC=4,CD=AC=6,∠ECD=∠BCA=90°.
∴AE=AC-CE=2.
∵FG⊥AC,CD⊥AC,
∴FG∥CD.
又∵F是ED的中点,
∴G是CE的中点,
∴EG=2,FG=$\frac{1}{2}$CD=3.
∴AG=AE+EG=4.
∴AF=$\sqrt{A{G}^{2}+F{G}^{2}}$=5.
故选:C.

点评 本题主要考查的是旋转的性质、平行线分线段成比例定理、三角形的中位线定理、勾股定理的应用,证得FG为△△ECD的中位线是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网