题目内容

15.如图,△ABC中,点E、F在BC边上,点D,G分别在AB,AC边上,四边形DEFG是矩形,若矩形DEFG面积与△ADG的面积相等,设△ABC的BC边上高AH与DG相交于点K,则$\frac{DG}{BC}$的值为(  )
A.1:1B.1:2C.2:3D.$\sqrt{2}$:3

分析 根据题意可以求得AK与KH的比值,从而可以求得AK与AH的比值,然后根据三角形形似即可解答本题.

解答 解:∵矩形DEFG面积与△ADG的面积相等,
∴$\frac{\frac{AK•DG}{2}}{KH•DG}=\frac{1}{1}$,
∴$\frac{AK}{KH}=\frac{2}{1}$,
∴$\frac{AK}{AH}=\frac{2}{3}$,
∵四边形DEFG是矩形,
∴DG∥BC,
∴△ADG∽△ABC,
∴$\frac{DG}{BC}=\frac{AK}{AH}=\frac{2}{3}$,
故选C.

点评 本题考查相似三角形的判定与性质、矩形的性质,解题的关键是明确题意,找出所求问题需要的条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网