题目内容

2.如图,在矩形ABCD中,E、F分别是AD、BC中点,连接AF、BE、CE、DF分别交于点M、N,四边形EMFN是菱形.

分析 求出四边形ABFE为平行四边形,四边形BFDE为平行四边形,根据平行四边形的性质得出BE∥FD,即ME∥FN,同理可证EN∥MF,得出四边形EMFN为平行四边形,求出ME=MF,根据菱形的判定得出即可.

解答 解:四边形EMFN是菱形;理由如下:
∵四边形ABCD为矩形,
∴AD∥BC,AD=BC,
又∵E,F分别为AD,BC中点,
∴AE∥BF,AE=BF,ED∥CF,DE=CF,
∴四边形ABFE为平行四边形,四边形BFDE为平行四边形,
∴BE∥FD,即ME∥FN,
同理可证EN∥MF,
∴四边形EMFN为平行四边形,
∵四边形ABFE为平行四边形,∠ABC为直角,
∴ABFE为矩形,
∴AF,BE互相平分于M点,
∴ME=MF,
∴四边形EMFN为菱形;
故答案为:菱形.

点评 本题考查了矩形的性质和判定,菱形的判定,平行四边形的性质和判定的应用,能综合运用性质进行推理是解此题的关键,题目比较好,综合性比较强.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网