题目内容
1.如图,在给定的一张平行四边形纸片上作一个菱形.小米的作法是:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.则小米的依据是对角线互相垂直的平行四边形是菱形.分析 先根据MN垂直平分AC,推导出△AOM≌△CON,进而的而出AM=CN,再根据AM∥CN,判定四边形AMCN是平行四边形,最后根据MN⊥AC,得出四边形AMCN是菱形.
解答 解:∵AC的垂直平分线MN分别交AD,AC,BC于M,O,N,
∴AO=CO,∠AOM=∠CON,
∵AD∥BC,
∴∠AMO=∠CNO,
在△AOM和△CON中
$\left\{\begin{array}{l}{∠AMO=∠CNO}\\{∠AOM=∠CON}\\{AO=CO}\end{array}\right.$
∴△AOM≌△CON(AAS)
∴AM=CN,
又∵AM∥CN,
∴四边形AMCN是平行四边形,
又∵MN⊥AC,
∴四边形AMCN是菱形.(对角线互相垂直的平行四边形是菱形)
故答案为:对角线互相垂直的平行四边形是菱形.
点评 本题主要考查了菱形的判定,对角线互相垂直的平行四边形是菱形,几何语言为:∵AC⊥BD,四边形ABCD是平行四边形,∴平行四边形ABCD是菱形.
练习册系列答案
相关题目
6.
如图,能判定AB∥CD的条件是( )
| A. | ∠1=∠2 | B. | ∠3=∠4 | C. | ∠1=∠3 | D. | ∠2=∠4 |