题目内容
14.| A. | 25° | B. | 30° | C. | 35° | D. | 45° |
分析 欲求∠D,因为∠D=$\frac{1}{2}$∠AOB,所以只要求出∠AOB即可解决问题.
解答 解:
∵AB是⊙O的切线,
∴AB⊥OB,
∴∠ABO=90°,
∵∠A=30°,
∴∠AOB=90°-∠A=60°,
∴∠D=$\frac{1}{2}$∠AOB=30°.
故选B.
点评 本题考查切线的性质、圆心角与圆周角的关系,熟练应用圆周角等于同弧所对圆心角的一半是解题的关键,属于中考常考题型.
练习册系列答案
相关题目
4.某商店销售面向中考生的计数跳绳,每根成本为20元,销售的前40天内的日销售量m(根)与时间t(天)的关系如表.
前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=$\frac{1}{4}$t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=-$\frac{1}{2}$t+40(21≤t≤40且t为整数).
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;
(2)倾计算40天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<3)给希望工程.公司通过销售记录发现,前20天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.
| 时间t(天) | 1 | 3 | 8 | 10 | 26 | … |
| 日销售量m(件) | 51 | 49 | 44 | 42 | 26 | … |
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;
(2)倾计算40天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<3)给希望工程.公司通过销售记录发现,前20天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.