ÌâÄ¿ÄÚÈÝ
15£®Èçͼ1£¬ÒÑÖª¡÷ABCÖУ¬AB=AC£¬¡ÏBACµÄ¶ÈÊýΪ¦Á£¬µãDÊǵױßBCÉÏÒ»¶¯µã£¬½«¡÷ABDÈÆµãAÄæÊ±ÕëÐýת¦Á¶ÈµÃµ½¡÷ACE£¬Á¬½ÓDE£®£¨1£©ÇóÖ¤£º¡÷ABC¡×¡÷ADE£»
£¨2£©Èçͼ2£¬µ±µãDÔ˶¯µ½BCÖеãʱ£¬¹ýµãE×÷EF¡ÎBC½»ACÓÚµãF£¬Á¬½ÓDF£¬ÅжÏËıßÐÎCDFEµÄÐÎ×´£¬²¢¸ø³öÖ¤Ã÷£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬¡÷ABCÂú×ãÌõ¼þ¡ÏBAC=90¡ãʱ£¬ËıßÐÎCDFEΪÕý·½ÐΣ®
·ÖÎö £¨1£©¸ù¾ÝÐýתµÄÐÔÖʿɵÃAB=AC£¬AD=AE£¬¡ÏBAD=¡ÏCAE£¬´Ó¶ø¿ÉµÃ$\frac{AB}{AD}$=$\frac{AC}{AE}$£¬¡ÏBAC=¡ÏDAE£¬¼´¿ÉµÃµ½¡÷ABC¡×¡÷ADE£»
£¨2£©Ò×Ö¤¡ÏACE=¡ÏABD=¡ÏACD=¡ÏEFC£¬ÔòÓÐEF=EC£¬´Ó¶ø¿ÉµÃEF=EC=BD=DC£¬ÓÉ´Ë¿ÉÖ¤µ½ËıßÐÎCDFEÊÇÁâÐΣ»
£¨3£©ÒªÊ¹ÁâÐÎCDFEÊÇÕý·½ÐΣ¬Ö»Ðè¡ÏDCE=90¡ã£¬Ö»Ðè¡ÏDCF=45¡ã£¬Ö»Ðè¡ÏBAC=90¡ã£®
½â´ð ½â£º£¨1£©ÓÉÐýתµÄÐÔÖʿɵ㺡÷ABD¡Õ¡÷ACE£¬
ÔòBD=CE£¬AB=AC£¬AD=AE£¬¡ÏABD=¡ÏACE£¬¡ÏBAD=¡ÏCAE£¬
¡à$\frac{AB}{AD}$=$\frac{AC}{AE}$£¬¡ÏBAC=¡ÏDAE£¬
¡à¡÷ABC¡×¡÷ADE£»
£¨2£©ËıßÐÎCDFEÊÇÁâÐΣ®
ÀíÓÉ£º¡ßAB=AC£¬
¡à¡ÏABC=¡ÏACB£¬
¡à¡ÏACE=¡ÏACB£®
¡ßEF¡ÎBC£¬
¡à¡ÏEFC=¡ÏACB£¬
¡à¡ÏEFC=¡ÏACE£¬
¡àEF=EC£¬
¡àEF=CE=BD£®
¡ßBD=DC£¬
¡àEF=DC£®
ÓÖ¡ßEF¡ÎDC£¬
¡àËıßÐÎDCEFÊÇÆ½ÐÐËıßÐΣ®
¡ßEF=EC£¬
¡à?DCEFÊÇÁâÐΣ»
£¨3£©µ±¡ÏBAC=90¡ãʱ£¬
¡ßAB=AC£¬
¡à¡ÏABC=¡ÏACB=45¡ã£¬
¡à¡ÏACE=¡ÏABC=45¡ã£¬
¡à¡ÏDCE=90¡ã£¬
¡àÁâÐÎDCEFÊÇÕý·½ÐΣ¬
¹Ê´ð°¸Îª¡ÏBAC=90¡ã£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÏàËÆÈý½ÇÐεÄÅж¨¡¢ÁâÐεÄÅж¨¡¢Õý·½ÐεÄÅж¨¡¢ÐýתµÄÐÔÖÊ¡¢µÈÑüÈý½ÇÐεÄÅж¨ÓëÐÔÖʵÈ֪ʶ£¬Ö¤µ½¡ÏACE=¡ÏEFC½ø¶øµÃµ½EF=ECÊǽâ¾öµÚ£¨2£©Ð¡ÌâµÄ¹Ø¼ü£®
| A£® | -4ÊÇ16µÄƽ·½¸ù | B£® | $\sqrt{16}$µÄËãÊõƽ·½¸ùÊÇ4 | ||
| C£® | 0ûÓÐËãÊõƽ·½¸ù | D£® | 2µÄƽ·½¸ùÊÇ$\sqrt{2}$ |
| A£® | $\left\{\begin{array}{l}{x+y=2}\\{2x-y=1}\end{array}\right.$ | B£® | $\left\{\begin{array}{l}{2x-y=1}\\{3x-2y=1}\end{array}\right.$ | C£® | $\left\{\begin{array}{l}{2x-y=1}\\{3x+2y=5}\end{array}\right.$ | D£® | $\left\{\begin{array}{l}{x+y=2}\\{3x-2y=1}\end{array}\right.$ |