题目内容
6.已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.
证明:FH⊥AB(已知)
∴∠BHF=90°.
∵∠1=∠ACB(已知)
∴DE∥BC(同位角相等,两直线平行)
∴∠2=∠BCD.(两直线平行,内错角相等)
∵∠2=∠3(已知)
∴∠3=∠BCD.(等量代换)
∴CD∥FH(同位角相等,两直线平行)
∴∠BDC=∠BHF=90.°(两直线平行,同位角角相等)
∴CD⊥AB.
分析 先根据垂直的定义得出∠BHF=90°,再由∠1=∠ACB得出DE∥BC,故可得出∠2=∠BCD,根据∠2=∠3得出∠3=∠BCD,所以CD∥FH,由平行线的性质即可得出结论.
解答 证明:FH⊥AB(已知),
∴∠BHF=90°.
∵∠1=∠ACB(已知),
∴DE∥BC(同位角相等,两直线平行),
∴∠2=∠BCD.(两直线平行,内错角相等).
∵∠2=∠3(已知),
∴∠3=∠BCD(等量代换),
∴CD∥FH(同位角相等,两直线平行),
∴∠BDC=∠BHF=90°,(两直线平行,同位角角相等)
∴CD⊥AB.
故答案为:90°;同位角相等,两直线平行;∠BCD;两直线平行,内错角相等;∠BCD;等量代换;同位角相等,两直线平行;90;两直线平行,同位角角相等.
点评 本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.
练习册系列答案
相关题目
17.小强到体育用品商店购买羽毛球球拍和乒乓球球拍,已知购买1副羽毛球球拍和1副乒乓球球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,根据题意,下面所列方程组正确的是( )
| A. | $\left\{\begin{array}{l}{x+y=50}\\{10(x+y)=320}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+y=50}\\{6x+10y=320}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{x+y=50}\\{6x+y=320}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+y=50}\\{10x+6y=320}\end{array}\right.$ |
1.商店出售下列形状的地砖:
①长方形;②正方形;③正五边形;④正六边形.
若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有( )
①长方形;②正方形;③正五边形;④正六边形.
若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有( )
| A. | 1种 | B. | 2种 | C. | 3种 | D. | 4种 |
18.下列各式是最简二次根式的为( )
| A. | $\sqrt{27}$ | B. | $\sqrt{\frac{a}{5}}$ | C. | $\sqrt{8a}$ | D. | $\sqrt{10a}$ |
15.以方程组$\left\{\begin{array}{l}y-x=1\\ y+x=2\end{array}\right.$的解为坐标的点(x,y)在第( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |