ÌâÄ¿ÄÚÈÝ
10£®£¨1£©½â·½³Ì×é$\left\{\begin{array}{l}{\frac{x}{2}-\frac{y+1}{3}=1}\\{3x+2y=2}\end{array}\right.$£¨2£©½â²»µÈʽ×é$\left\{\begin{array}{l}{5x+7£¾3£¨x+1£©}\\{\frac{1}{2}x-1¡Ü1-\frac{3}{2}x}\end{array}\right.$
²¢°Ñ½â¼¯ÔÚÊýÖáÉϱíʾ³öÀ´£®
·ÖÎö £¨1£©ÕûÀíÔ·½³Ì×éΪһ°ãʽ£¬ÔÙÀûÓüӼõÏûÔª·¨Çó½â¿ÉµÃ£»
£¨2£©·Ö±ðÇó³öÿһ¸ö²»µÈʽµÄ½â¼¯£¬¸ù¾Ý¿Ú¾÷£ºÍ¬´óÈ¡´ó¡¢Í¬Ð¡È¡Ð¡¡¢´óСС´óÖмäÕÒ¡¢´ó´óССÎÞ½âÁËÈ·¶¨²»µÈʽ×éµÄ½â¼¯£®
½â´ð ½â£º£¨1£©Ô·½³Ì×éÕûÀí¿ÉµÃ£º$\left\{\begin{array}{l}{3x-2y=8}&{¢Ù}\\{3x+2y=2}&{¢Ú}\end{array}\right.$£¬
¢Ù+¢Ú£¬µÃ£º6x=10£¬
½âµÃ£ºx=$\frac{5}{3}$£¬
¢Ú-¢Ù£¬µÃ£º4y=-6£¬
½âµÃ£ºy=-$\frac{3}{2}$£¬
Ôò·½³Ì×éµÄ½âΪ$\left\{\begin{array}{l}{x=\frac{5}{3}}\\{y=-\frac{3}{2}}\end{array}\right.$£»
£¨2£©$\left\{\begin{array}{l}{5x+7£¾3£¨x+1£©}&{¢Ù}\\{\frac{1}{2}x-1¡Ü1-\frac{3}{2}x}&{¢Ú}\end{array}\right.$£¬
½â²»µÈʽ¢Ù£¬µÃ£ºx£¾-2£¬
½â²»µÈʽ¢Ú£¬µÃ£ºx¡Ü1£¬
¡à²»µÈʽ×éµÄ½â¼¯Îª-2£¼x¡Ü1£¬
½«½â¼¯±íʾÔÚÊýÖáÉÏÈçÏ£º![]()
µãÆÀ ±¾Ì⿼²éµÄÊǽâ¶þÔªÒ»´Î·½³Ì×éºÍÒ»ÔªÒ»´Î²»µÈʽ×飬ÕýÈ·Çó³öÿһ¸ö²»µÈʽ½â¼¯ÊÇ»ù´¡£¬ÊìÖª¡°Í¬´óÈ¡´ó£»Í¬Ð¡È¡Ð¡£»´óСС´óÖмäÕÒ£»´ó´óССÕÒ²»µ½¡±µÄÔÔòÊǽâ´ð´ËÌâµÄ¹Ø¼ü£®
| A£® | 30¡ã | B£® | 37.5¡ã | C£® | 45¡ã | D£® | 50¡ã |
| ¹Ø×¢µÄÎÊÌâ | ƵÊý | ƵÂÊ |
| A | 32 | m |
| B | a | 0.2 |
| C | 8 | 0.1 |
| D | 24 | n |
| ºÏ¼Æ | b | 1 |
£¨1£©±íÖеÄb=80£¬n=0.3£»
£¨2£©½«ÌõÐÎͳ¼ÆÍ¼²¹³äÍêÕû£»
£¨3£©ÈôСÃ÷ËùÔÚµÄѧУÓÐ1100ÃûѧÉú£¬ÄÇô¸ù¾ÝСÃ÷ÌṩµÄÐÅÏ¢¹À¼Æ¸ÃУ¹Ø×¢¡°¿ÕÆøÎÛȾ¡±µÄѧÉú´óÔ¼ÓжàÉÙÈË£¿