题目内容

在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cos A的值等于

. 【解析】 试题分析:∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB==,∴cosA==,故答案为:.
练习册系列答案
相关题目

如图,已知要在一块长方形的空地上修建一个花坛,要求花坛图案(阴影部分)为轴对称图形,图中的设计符合要求的有(  )

A. 4个 B. 3个 C. 2个 D. 1个

A 【解析】根据轴对称图形的概念即可判定. 【解析】 四副设计图中的阴影部分均为轴对称图形,故满足设计要求的图形有4个. 故选A.

如图,在平面直角坐标系xOy中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于(  )

A. B. C. D.

A 【解析】试题解析:过A作AC⊥x轴, ∵A(2,1), ∴AC=1,OC=2, 在Rt△AOC中,根据勾股定理得:OA=, 则sin∠AOB=, 故选A

如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为

【解析】 试题分析:本题首先将∠ABC转化到某一个直角三角形中,然后进行求值.

sin70°,cos70°,tan70°的大小关系是(  )

A. tan70°<cos70°<sin70° B. cos70°<tan70°<sin70°

C. sin70°<cos70°<tan70° D. cos70°<sin70°<tan70°

D 【解析】根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1. 又cos70°=sin20°,正弦值随着角的增大而增大,∴sin70°>cos70°=sin20°. 故选D.

在Rt△ABC中,各边的长度都扩大两倍,那么锐角A的各三角函数值( )

A.都扩大两倍 B.都缩小两倍 C.不变 D.都扩大四倍

C 【解析】 试题分析:根据三边对应成比例,两三角形相似,可知扩大后的三角形与原三角形相似,再根据相似三角形对应角相等解答. 【解析】 ∵各边的长度都扩大两倍, ∴扩大后的三角形与Rt△ABC相似, ∴锐角A的各三角函数值都不变. 故选C.

如图,∠1=∠2,P为BN上一点,且PD⊥BC于点D,AB+BC=2BD.试说明:∠BAP+∠BCP=180°.

见解析 【解析】作PE垂直于AB于E,根据角平分线的性质可知PD=PE,HL定理可知△PBD≌△PBE,可得BD=BE,根据题中线段和差的关系,可得△PAE≌△PCD,所以可知∠PAE=∠PCD,根据∠PAE+∠PAB=180°,即可证明题中关系. 证明:如图,过点P作PE⊥BA于E. ∵PD⊥BC,PE⊥BM,∠1=∠2, ∴PD=PE. ∵PD⊥BC,PE⊥BM,...

如图所示,F、C在线段BE上,且∠1=∠2,BC=EF.若要根据“SAS”使△ABC≌△DEF,还需要补充的条件是________.

AC=DF 【解析】已知∠1=∠2,BC=EF,根据“SAS”使△ABC≌△DEF,还需要补充的条件是AC=DF.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网