题目内容

sin70°,cos70°,tan70°的大小关系是(  )

A. tan70°<cos70°<sin70° B. cos70°<tan70°<sin70°

C. sin70°<cos70°<tan70° D. cos70°<sin70°<tan70°

D 【解析】根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1. 又cos70°=sin20°,正弦值随着角的增大而增大,∴sin70°>cos70°=sin20°. 故选D.
练习册系列答案
相关题目

一个等腰三角形两边的长分别是15cm和7cm则它的周长是__________.

37cm 【解析】①7cm是腰长时,三角形的三边分别为7cm、7cm、15cm, ∵7+7=14<15, ∴不能组成三角形, ②7cm是底边时,三角形的三边分别为7cm、15cm、15cm, 能组成三角形, 周长=7+15+15=37cm, 综上所述,它的周长是37cm. 故答案为:37cm.

在Rt△ABC中,∠C=90°,CD是斜边AB上的高,如果CD=3,BD=2.求cos∠A的值.

【解析】分析:根据题意画出图形,进而利用锐角三角函数关系得出cosA=cos∠BCD进而求出即可. 本题解析: 如图所示: ∵∠ACB=90°,∴∠B+∠A=90°, ∵CD⊥AB,∴∠CDA=90°,∴∠B+∠BCD=90°,∴∠BCD=∠A, ∵CD=3,BD=2,∴BC= ∴cosA=cos∠BCD= 故答案为:

在Rt△ABC中,∠C=90°,如果AC:BC=3:4,求cosA的值.

【解析】分析:根据题意设AC=3x,BC=4x,故AB=5x,进而利用锐角三角函数关系求出答案. 本题解析: ∵在Rt△ABC中,∠C=90°,AC:BC=3:4, ∴设AC=3x,BC=4x,故AB=5x, 则cosA= 故答案为:

在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cos A的值等于

. 【解析】 试题分析:∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB==,∴cosA==,故答案为:.

在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中不一定成立的是(  )

A. b=atanB B. a=ccosB C. c= D. a=bcosA

D 【解析】∵∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c, ∴A.tanB= ,则b=atanB,故本选项正确, B.cosB= ,故本选项正确, C.sinA= ,故本选项正确, D.cosA= ,故本选项错误, 故选D.

如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于_____.

5 【解析】试题解析: 作EF⊥BC于F, ∵BE平分∠ABC,EF⊥BC,ED⊥AB, ∴EF=DE=2, ∴△BCE的面积 故答案为:5.

如图,矩形ABCD是供一机动车停放的车位示意图,已知BC=2m,CD=5.4m,∠DCF=30°.请你计算车位所占的宽度EF约为多少米?(≈1.73,结果保留一位小数)

4.4米 【解析】试题分析:分别在Rt△BCF和Rt△AEF中求得DF和DE的长后,相加即可得到EF的长. 试题解析: 在Rt△DCF中, ∵CD=5.4m,∠DCF=30°, ∴sin∠DCF=, ∴DF=2.7m, ∵∠CDF+∠DCF=90°∠ADE+∠CDF=90°, ∴∠ADE=∠DCF=30°, ∵AD=BC=2, ∴cos∠...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网