题目内容

对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称。其中真命题的个数为

A、0    B、1    C、2    D、3

C 【解析】 试题分析:根据平面图形的基本概念依次分析各小题即可作出判断. (1)关于某一直线成轴对称的两个三角形全等,(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点,均为真命题; (2)等腰三角形的对称轴是顶角的平分线所在的直线,(4)如果两个三角形全等,它们可能是平移或旋转构成的,均为假命题; 故选C.
练习册系列答案
相关题目

如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.

(1)求证:BM=MN;

(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.

(1)证明见解析;(2) 【解析】试题分析:(1)在△CAD中,由中位线定理得到MN∥AD,且MN=AD,在Rt△ABC中,因为M是AC的中点,故BM=AC,即可得到结论; (2)由∠BAD=60°且AC平分∠BAD,得到∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,得到∠BMC =60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN90°,得到,再由MN=...

如图,矩形ABCD中将其沿EF翻折后,D点恰落在B处,∠BFE= 650,则∠AEB=____________.

50° 【解析】根据翻折求出各个角的度数,再根据平角180°求出∠AEB的度数即可. 【解析】 如图所示, 由矩形ABCD可得AD∥BC, ∴∠1=∠BFE =65°, 由翻折得∠2=∠1 =65°, ∴∠AEB =180°-∠1- ∠2 =180°-65°-65°=50°.

如图,A与A′关于直线MN对称,P是BA′与MN的交点.若P1为直线MN上任意一点(不与P重合),连结AP1、BP1,试说明 AP1+BP1>AP+BP.

见解析 【解析】试题分析:由三角形三条边的关系可得A′P1+BP1>A′B,再由轴对称的性质可得AP1=A′P1,然后通过等量代换可证明结论. 【解析】 如图,连结AP1,则在△A′P1B中,有A′P1+BP1>A′B ∴A′P1+BP1>A′P+PB ∵A与A′关于直线MN对称, ∴AP1与A′P1关于直线MN对称 ∴AP1=A′P1 同理可得:AP=...

已知在Rt△ABC中,斜边AB=2BC,以直线AC为对称轴,点B的对称点是B',如图所示,则与线段BC相等的线段是____,与线段AB相等的线段是_______和_______,与∠B相等的角是________和_______,因此可得到∠B=________.

B′ C AB′ BB ′ ∠B′ ∠BAB′ 60° 【解析】∵以直线AC为对称轴,点B的对称点是B' , ∴B′C=BC , ∠B′CA=∠BCA=90°,AB′=AB=2BC, ∴AB′=AB=BB′, ∴∠B′=∠B=∠B′AB =60°.

两个图形关于某直线对称,对称点一定( )

A. 这直线的两旁 B. 这直线的同旁 C. 这直线上 D. 这直线两旁或这直线上

D 【解析】由成轴对称的定义知,成轴对称的两个图形的对称点,或者在对称轴上,或者在对称轴两旁. 故选D.

下列说法正确的是( )

A. 两个全等的三角形一定关于某条直线对称 B. 关于某条直线的对称的两个三角形一定全等

C. 直角三角形是轴对称图形 D. 锐角三角形都是轴对称图形

B 【解析】A.根据轴对称的定义,全等三角形不一定关于某直线对称,故错误; B. 根据轴对称的性质,关于某条直线的对称的两个三角形一定全等,故正确; C.直角三角形中,等腰直角三角形是轴对称图形,其它一般的直角三角形不是,故错误; D.锐角三角形不一定是轴对称图形,如三个角分别是50°、60°、70°的三角形就不是轴对称图形,故错误. 故选B.

把分式中的m和n都扩大4倍,那么分式的值( )

A. 也扩大4倍 B. 扩大为原来的4倍 C. 不变 D. 缩小为原来的

C 【解析】试题分析:把分式中的m、n分别用4m、4n代替, 得==, 所以分式的值不变, 故选C.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网