题目内容

如图,A与A′关于直线MN对称,P是BA′与MN的交点.若P1为直线MN上任意一点(不与P重合),连结AP1、BP1,试说明 AP1+BP1>AP+BP.

见解析 【解析】试题分析:由三角形三条边的关系可得A′P1+BP1>A′B,再由轴对称的性质可得AP1=A′P1,然后通过等量代换可证明结论. 【解析】 如图,连结AP1,则在△A′P1B中,有A′P1+BP1>A′B ∴A′P1+BP1>A′P+PB ∵A与A′关于直线MN对称, ∴AP1与A′P1关于直线MN对称 ∴AP1=A′P1 同理可得:AP=...
练习册系列答案
相关题目

六边形的内角和是( )

A.540° B.720° C.900° D.360°

B. 【解析】 试题分析:根据多边形的内角和公式可得六边形的内角和是(6﹣2)×180°=720°,故答案选B.

下列不等关系一定正确的是( )

A.|a|>0 B.﹣x2<0 C.(x+1)2≥0 D.a2>0

C 【解析】 试题分析:根据绝对值及完全平方式的性质求解. 【解析】 A、|a|≥0,错误; B、﹣x2≤0,错误; C、(x+1)2≥0,正确; D、a2≥0,错误, 故选C.

如图,△ABC和△A′B′C′关于直线l对称,下列结论中:

①△ABC≌△A′B′C′;

②∠BAC′=∠B′AC;

③l垂直平分CC′;

④直线BC和B′C′的交点不一定在l上,

正确的有( )

A. 4个 B. 3个 C. 2个 D. 1个

B 【解析】【解析】 ∵△ABC和△A′B′C′关于直线l对称, ∴①△ABC≌△A′B′C′,正确; ②∠BAC=∠B′AC′, ∴∠BAC+∠CAC′=∠B′AC′+∠CAC′, 即∠BAC′=∠B′AC正确; ③l垂直平分CC′,正确; ④应为:直线BC和B′C′的交点一定在l上,故本小题错误. 综上所述,结论正确的是①②③共3个. 故...

如图,将一个等腰直角三角形按图示方式依次翻折,则下列说法正确的个数有( )

①DF平分∠BDE;②△BFD是等腰三角形;③△CED的周长等于BC的长

A. 1个 B. 2个 C. 3个 D. 0个

B 【解析】根据轴对称的性质即可得出答案. 【解析】 由多次翻折可得,∠DBE=∠ABD=∠ABC=×45°=22.5°, ∠CDE =90°-∠C =90°-45°=45°=∠C, ∠FDE=∠CDE =45°, ∴∠ABD=∠EDB=∠ADE=×(180°-∠CDE) =×(180°-45°)=67. 5°, ∴①DF平分∠BDE错误,如果正确的话,∠BD...

如图,∠AOB内一点P,分别画出P关于OA、OB的对称点P1、P2连P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长为_______.

5cm 【解析】∵P、P1,P、P2关于OA、OB对称, ∴PM=P1M,PN=P2N, ∴△PMN的周长=P1P2, ∴△PMN的周长是5 cm.

对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称。其中真命题的个数为

A、0    B、1    C、2    D、3

C 【解析】 试题分析:根据平面图形的基本概念依次分析各小题即可作出判断. (1)关于某一直线成轴对称的两个三角形全等,(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点,均为真命题; (2)等腰三角形的对称轴是顶角的平分线所在的直线,(4)如果两个三角形全等,它们可能是平移或旋转构成的,均为假命题; 故选C.

嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.

已知:如图1,在四边形ABCD中,BC=AD,AB=

求证:四边形ABCD是 四边形.

(1)在方框中填空,以补全已知和求证;

(2)按嘉淇同学的思路写出证明过程;

(3)用文字叙述所证命题的逆命题.

(1)见解析;(2)见解析 【解析】试题分析:(1)命题的题设为“两组对边分别相等的四边形”,结论是“是平行四边形”,即可得到结论; (2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,根据两组对边分别平行的四边形是平行四边形可得四边形ABCD是平行四边形; (3)把命题“两组对边分别相等的四边形是平行四...

计算:

【解析】试题分析:根据分式乘除法法则计算即可. 试题解析:原式==.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网