题目内容
12.分析 作PO⊥AB于O.利用勾股定理求出PA,求出圆锥的表面积即可解决问题.
解答 解:作PO⊥AB于O.![]()
在Rt△PAO中,PA=$\sqrt{O{P}^{2}+O{A}^{2}}$=$\sqrt{1{2}^{2}+{5}^{2}}$=13.
∴S表面积=π•5•13=65π.
∴做这个玩具所需纸板的面积是65πcm2.
故答案为65π.
点评 本题考查圆锥的表面积、解题的关键是记住圆锥的侧面积公式、底面积公式.
练习册系列答案
相关题目
20.
有这样一个问题:探究函数y=$\frac{1}{x}$+1的图象与性质.
小明根据学习一次函数的经验,对函数y=$\frac{1}{x}$+1的图象与性质进行了探究.
下面是小明的探究过程,请补充完整:
(1)函数y=$\frac{1}{x}$+1的自变量x的取值范围是x≠0;
(2)下表是y与x的几组对应值.
求出m的值;
(3)如图,在平面直角坐标系xOy中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)写出该函数的一条性质该函数没有最大值或 该函数没有最小值.
小明根据学习一次函数的经验,对函数y=$\frac{1}{x}$+1的图象与性质进行了探究.
下面是小明的探究过程,请补充完整:
(1)函数y=$\frac{1}{x}$+1的自变量x的取值范围是x≠0;
(2)下表是y与x的几组对应值.
| x | … | -4 | -3 | -2 | -1 | -m | m | 1 | 2 | 3 | 4 | … |
| y | … | $\frac{3}{4}$ | $\frac{2}{3}$ | $\frac{1}{2}$ | 0 | -1 | 3 | 2 | $\frac{3}{2}$ | $\frac{4}{3}$ | $\frac{5}{4}$ | … |
(3)如图,在平面直角坐标系xOy中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)写出该函数的一条性质该函数没有最大值或 该函数没有最小值.