题目内容

12.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是(  )
A.1<r<4B.2<r<4C.1<r<8D.2<r<8

分析 连接AD,
根据勾股定理得到AD=5,
根据圆与圆的位置关系得到r>5-3=2,
由点B在⊙D外,
于是得到r<4,
即可得到结论.

解答 解:连接AD,
∵AC=4,CD=3,∠C=90°,
∴AD=5,
∵⊙A的半径长为3,⊙D与⊙A相交,
∴r>5-3=2,
∵BC=7,
∴BD=4,
∵点B在⊙D外,
∴r<4,
∴⊙D的半径长r的取值范围是2<r<4,
故选B.

点评 本题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网