题目内容

用不等号填空:(1)若a>b,则ac2___bc2;(2)若a>b,则3-2a___3-2b.

≥ < 【解析】(1)当c=0时,ac2=bc2, 当c≠0时, ac2>bc2, 故答案为:≥; (2)因为a>b,由不等式的性质3有:-2a<-2b,再由不等式的性质1得,3-2a>3-2b,故答案为:<.
练习册系列答案
相关题目

是一个完全平方式,那么k=_______________

9 【解析】因为若是一个完全平方式,那么,那么答案是k=9. 故答案为:9.

如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是(  )

A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°

C 【解析】试题分析:本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能. A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意; B、添加∠BAC=∠DAC,根据SAS,能判定△ABC...

根据不等式的基本性质,把下列不等式化成x>a或x<a的形式:

(1)2x>-4; (2)x-4<-2;

(3)-2x<1; (4) x<2.

(1)x>-2 (2)x<2 (3)x>- (4)x<4 【解析】试题分析:各不等式利用不等式的基本性质变形化为x>a或x<a的形式即可. 试题解析:(1)2x>-4, 两边同时除以2,得 x>-2; (2)x-4<-2, 两边同时加上4,得 x<2; (3)-2x<1, 两边同时除以-2,得 x>- ; (4) x<2, 两...

在五边形ABCDE中,∠A+∠B=240°,∠C=∠D=∠E=2∠B.求∠B的度数.

50° 【解析】试题分析:首先求得五边形ABCDE的内角和,设∠B=x°,即可利用x表示其它角的度数,根据多边形的内角和定理即可列方程,从而求得∠B的度数. 试题解析:五边形ABCDE的内角和是(5-2)×180°=540°, 设∠B=x°,则∠C=∠D=∠E=2∠B=2x°, ∵∠A+∠B=240° ∴∠A=240-x° ∵∠A+∠B+∠C+∠D+∠E=540...

若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是(  )

A. 7 B. 10 C. 35 D. 70

C 【解析】由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论. 【解析】 ∵一个正n边形的每个内角为144°, ∴144n=180×(n﹣2),解得:n=10. 这个正n边形的所有对角线的条数是:==35. 故选C.

如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.

(1)求证:BM=MN;

(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.

(1)证明见解析;(2) 【解析】试题分析:(1)在△CAD中,由中位线定理得到MN∥AD,且MN=AD,在Rt△ABC中,因为M是AC的中点,故BM=AC,即可得到结论; (2)由∠BAD=60°且AC平分∠BAD,得到∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,得到∠BMC =60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN90°,得到,再由MN=...

如图,矩形ABCD中将其沿EF翻折后,D点恰落在B处,∠BFE= 650,则∠AEB=____________.

50° 【解析】根据翻折求出各个角的度数,再根据平角180°求出∠AEB的度数即可. 【解析】 如图所示, 由矩形ABCD可得AD∥BC, ∴∠1=∠BFE =65°, 由翻折得∠2=∠1 =65°, ∴∠AEB =180°-∠1- ∠2 =180°-65°-65°=50°.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网