题目内容

若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是(  )

A. 7 B. 10 C. 35 D. 70

C 【解析】由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论. 【解析】 ∵一个正n边形的每个内角为144°, ∴144n=180×(n﹣2),解得:n=10. 这个正n边形的所有对角线的条数是:==35. 故选C.
练习册系列答案
相关题目

如果多项式能用公式法分解因式,那么k的值是(  )

A. 3 B. 6 C. D.

D 【解析】由于可以利用公式法分解因式,所以它是一个完全平方式,所以. 故选:D.

当x=_____时,分式的值为零.

【解析】由题意可得1+2x=0且1-2x≠0,解得x=. 故当x=时,分式的值为零。故答案为: .

用不等号填空:(1)若a>b,则ac2___bc2;(2)若a>b,则3-2a___3-2b.

≥ < 【解析】(1)当c=0时,ac2=bc2, 当c≠0时, ac2>bc2, 故答案为:≥; (2)因为a>b,由不等式的性质3有:-2a<-2b,再由不等式的性质1得,3-2a>3-2b,故答案为:<.

如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4=    .

300° 【解析】由题意得,∠5=180°-∠EAB=60° , 又∵多边形的外角和为360°, ∴∠1+∠2+∠3+∠4=360°-∠5=300°.

六边形的内角和是( )

A.540° B.720° C.900° D.360°

B. 【解析】 试题分析:根据多边形的内角和公式可得六边形的内角和是(6﹣2)×180°=720°,故答案选B.

已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.

证明见解析. 【解析】试题分析:根据BD,CE是△ABC的中线可得DE是△ABC的中位线,F,G分别是OB,OC的中点可得FG是△BOC的中位线,根据三角形中位线定理可得DE∥BC且DE=BC,FG∥BC且FG=BC,进而可得DE∥FG且DE=FG,根据一组对边平行且相等的四边形是平行四边形可得结论. 试题解析:∵BD、CE是△ABC的中线,∴DE是△ABC的中位线, ∴DE∥B...

班级50名学生上体育课,老师出了一道题目:现在我拿来一些篮球,如果每5人一组玩一个篮球,有些同学没有球玩;如果每6人一组玩一个篮球,就会有一组玩篮球的人数不足6个.你们知道有几个篮球吗?

甲同学说:如果有个篮球,

乙同学说:

丙同学说:

你明白他们的意思吗?

甲同学说的意思是:如果每5人一组玩一个篮球,那么玩球的人数少于50人,有些同学就没有球玩. 乙同学说的意思是:如果每6人一组玩一个篮球,那么就会有一个组玩篮球的人数不足6人. 丙同学说的意思是:如果每6人一组玩一个篮球,除了一个球以外,剩下的每6人玩一个球,还有几个(不足6人)玩另外一个篮球. 【解析】 试题分析: 甲同学说的意思是:如果每5人一组玩一个篮球,那么玩球...

如图,将一个等腰直角三角形按图示方式依次翻折,则下列说法正确的个数有( )

①DF平分∠BDE;②△BFD是等腰三角形;③△CED的周长等于BC的长

A. 1个 B. 2个 C. 3个 D. 0个

B 【解析】根据轴对称的性质即可得出答案. 【解析】 由多次翻折可得,∠DBE=∠ABD=∠ABC=×45°=22.5°, ∠CDE =90°-∠C =90°-45°=45°=∠C, ∠FDE=∠CDE =45°, ∴∠ABD=∠EDB=∠ADE=×(180°-∠CDE) =×(180°-45°)=67. 5°, ∴①DF平分∠BDE错误,如果正确的话,∠BD...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网