题目内容

如图,在平面直角坐标系xOy中,正方形ABCD顶点A(-1,-1)、B(-3,-1). 我们规定“把正方形ABCD先沿x轴翻折,再向右平移2个单位”为一次变换.
(1)如果正方形ABCD经过1次这样的变换得到正方形A1B1C1D1,那么B1的坐标是
 

(2)如果正方形ABCD经过2014次这样的变换得到正方形A2014B2014C2014D2014,那么B2014的坐标是
 
考点:规律型:点的坐标
专题:
分析:(1)把正方形ABCD先沿x轴翻折,则点B关于x轴对称,得到B点的坐标为:(-3,1),再向右平移2个单位”后点B的坐标为:(-3+2,1),即B1(-1,1).
(2)首先由正方形ABCD,点A、B的坐标分别是(-1,-1)、(-3,-1),然后根据题意求得第1次、2次、3次变换后的点B的对应点的坐标,即可得规律:第n次变换后的点B的对应点的为:当n为奇数时为(2n-3,1),当n为偶数时为(2n-3,-1),继而求得把正方形ABCD经过连续2014次这样的变换得到正方形A′B′C′D′,则点B的对应点B′的坐标.
解答:解:(1)∵正方形ABCD,点A、B的坐标分别是(-1,-1)、(-3,-1),
∴根据题意得:第1次变换后的点B的对应点的坐标为(-3+2,1),即B1(-1,1),
(2)第2次变换后的点B的对应点的坐标为:(-1+2,-1),即(1,-1),
第3次变换后的点B的对应点的坐标为(1+2,1),即(3,1),
第n次变换后的点B的对应点的为:当n为奇数时为(2n-3,1),当n为偶数时为(2n-3,-1),
∴把正方形ABCD经过连续2014次这样的变换得到正方形A′B′C′D′,则点B的对应点B′的坐标是:(4025,-1).
故答案为:(-1,1);(4025,-1).
点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点B的对应点的坐标为:当n为奇数时为(2n-3,1),当n为偶数时为(2n-3,-1)是解此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网