ÌâÄ¿ÄÚÈÝ
3£®£¨1£©µ±tΪºÎֵʱ£¬ËıßÐÎABDEÊǾØÐΣ»
£¨2£©µ±tΪºÎֵʱ£¬ËıßÐÎOEDCÊÇÆ½ÐÐËıßÐΣ¿
£¨3£©Á¬½ÓAD£¬¼Ç¡÷ADEµÄÃæ»ýΪS£¬ÇóSÓëtµÄº¯Êý¹ØÏµÊ½£®
·ÖÎö £¨1£©¸ù¾Ý¾ØÐεÄÅж¨¶¨ÀíÁгö¹ØÏµÊ½£¬¼ÆËã¼´¿É£»
£¨2£©¸ù¾ÝƽÐÐËıßÐεÄÅж¨¶¨ÀíºÍÐÔÖʶ¨Àí½â´ð£»
£¨3£©·ÖµãEÔÚOAÉϺ͵ãEÔÚABÉÏÁ½ÖÖÇé¿ö£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½¼ÆËã¼´¿É
½â´ð ½â£º£¨1£©¡ßµãCµÄ×ø±êΪ£¨2£¬8£©£¬µãAµÄ×ø±êΪ£¨26£¬0£©£¬
¡àOA=26£¬BC=24£¬AB=8£¬
¡ßD£¨E£©µãÔ˶¯µÄʱ¼äΪtÃ룬![]()
¡àBD=t£¬OE=3t£¬
¡ßËıßÐÎABDEÊǾØÐΣ¬
¡àBD=AE£¬
¼´t=26-3t£¬
½âµÃ£¬t=$\frac{13}{2}$£»
£¨2£©¡ßËıßÐÎOEDCΪƽÐÐËıßÐΣ¬
¡àCD=OE£¬
¼´24-t=3t£¬
½âµÃ£¬t=6£»
£¨3£©
Èçͼ1£¬µ±µãEÔÚOAÉÏʱ£¬
AE=26-3t£¬
ÔòS=$\frac{1}{2}$¡ÁAE¡ÁAB=$\frac{1}{2}$¡Á£¨26-3t£©¡Á8=-12t+104£¬
µ±µãEÔÚABÉÏʱ£¬AE=3t-26£¬BD=t£¬
ÔòS=$\frac{1}{2}$¡ÁAE¡ÁDB=$\frac{1}{2}$¡Á£¨3t-26£©¡Át=$\frac{1}{2}$t2-13t£®
µãÆÀ ´ËÌâÊÇËıßÐÎ×ÛºÏÌ⣬Ö÷Òª¿¼²éÁ˾ØÐεÄÐÔÖÊ£¬Æ½ÐÐËıßÐεÄÐÔÖÊ£¬Èý½ÇÐεÄÃæ»ý¹«Ê½£¬ÕÆÎÕÏà¹ØµÄÐÔÖʶ¨ÀíºÍÅж¨¶¨Àí¡¢Áé»îÔËÓ÷ÖÇé¿öÌÖÂÛ˼ÏëÊǽâÌâµÄ¹Ø¼ü£®
| A£® | 3 | B£® | 2 | C£® | 1.5 | D£® | 2.5 |
| A£® | $\left\{\begin{array}{l}{5y=x+2}\\{6x+3=x}\end{array}\right.$ | B£® | $\left\{\begin{array}{l}{5y=x+2}\\{6y-3=x}\end{array}\right.$ | C£® | $\left\{\begin{array}{l}{5y=x-2}\\{6y=x+3}\end{array}\right.$ | D£® | $\left\{\begin{array}{l}{5y=x-2}\\{6y=x-3}\end{array}\right.$ |