题目内容

10.如图,在△ABC中,∠A=120°,AB=AC,AB的垂直平分线DE与AB,BC分别交于点D和E.若BE=3,试求CE的长.

分析 如图,连接AE,根据线段的垂直平分线的性质得到AE=BE,而AB=AC,∠A=120°,根据等腰三角形的性质得到∠B=∠C=∠BAE=30°,接着根据三角形的外角和内角的关系可以求出∠AEC,然后可以求出以∠EAC=90°,最后根据30°的角所对的直角边等于斜边的一半即可求出CE

解答 解:如图,连接AE.
∵△ABC中,AB=AC,∠A=120°,
∴∠B=∠C=30°,
又∵AB的垂直平分线DE分别交AB、BC于D、E,
∴AE=BE=3,
∴∠B=∠BAE=30°,
∴∠AEC=∠B+∠BAE=60°,
∴∠EAC=180°-∠C-∠AEC=90°,
而AE=3,
∴CE=6.

点评 本题考查了线段垂直平分线的定义,等腰三角形的性质,勾股定理的应用,以及直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网