题目内容
10.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?
(3)商店的营销部结合上述情况,提出了A、B两种营销方案:
方案A:为了让利学生,该计算器的销售利润不超过进价的24%;
方案B:为了满足市场需要,每天的销售量不少于120件.
请比较哪种方案的最大利润更高,并说明理由.
分析 (1)根据利润=(单价-进价)×销售量,列出函数关系式即可;
(2)根据(1)式列出的函数关系式,运用配方法求最大值;
(3)分别求出方案A、B中x的取值,然后分别求出A、B方案的最大利润,然后进行比较.
解答 解:(1)由题意得,销售量=150-10(x-30)=-10x+450,
则w=(x-25)(-10x+450)
=-10x2+700x-11250;
(2)w=-10x2+700x-11250=-10(x-35)2+1000,
∵-10<0,
∴函数图象开口向下,w有最大值,
当x=35时,w最大=1000元,
故当单价为35元时,该计算器每天的利润最大;
(3)B方案利润高.理由如下:
A方案中:∵25×24%=6,
此时wA=6×(150-10)=840元,
B方案中:每天的销售量为120件,单价为33元,
∴最大利润是120×(33-25)=960元,
此时wB=960元,
∵wB>wA,
∴B方案利润更高.
点评 本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=-$\frac{b}{2a}$时取得.
练习册系列答案
相关题目
11.已知$\frac{x}{y}$=$\frac{3}{2}$,那么下列等式中一定正确的是( )
| A. | $\frac{3x}{y}=\frac{9}{2}$ | B. | $\frac{x+3}{y+3}=\frac{6}{5}$ | C. | $\frac{x-3}{y-2}=\frac{3}{2}$ | D. | $\frac{x+y}{x}=\frac{5}{2}$ |