题目内容
10.函数y=$\frac{1}{\sqrt{2x-1}}$自变量x的取值范围是( )| A. | x≤$\frac{1}{2}$ | B. | x≥$\frac{1}{2}$ | C. | x$<\frac{1}{2}$ | D. | x>$\frac{1}{2}$ |
分析 由二次根式的被开方数大于等于0可得2x-1≥0,由分式有意义的性质可得2x-1≠0,即可求出自变量x的取值范围.
解答 解:
由二次根式的被开方数大于等于0可得2x-1≥0①,
由分式有意义的性质可得2x-1≠0②,
由①②可知x>$\frac{1}{2}$,
故选D.
点评 本题考查了自变量的取值范围,熟练掌握①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x-1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
练习册系列答案
相关题目
5.
为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分
根据以上信息,解答下列问题
(1)家庭用水量在4.0<x≤6.5范围内的家庭有13户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是30%;
(2)本次调查的家庭数为50户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是18%;
(3)家庭用水量的中位数落在C组;
(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.
| 分组 | 家庭用水量x/吨 | 家庭数/户 |
| A | 0≤x≤4.0 | 4 |
| B | 4.0<x≤6.5 | 13 |
| C | 6.5<x≤9.0 | |
| D | 9.0<x≤11.5 | |
| E | 11.5<x≤14.0 | 6 |
| F | x>14.0 | 3 |
(1)家庭用水量在4.0<x≤6.5范围内的家庭有13户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是30%;
(2)本次调查的家庭数为50户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是18%;
(3)家庭用水量的中位数落在C组;
(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.