题目内容

9.化简与求值:
(1)若m=-3,则代数式$\frac{2}{3}$m2+1的值为7;
(2)若m+n=-3,则代数式$\frac{2(m+n)^{2}}{3}+1$的值为7;
(3)若3m+n=2,请仿照以上求代数式值的方法求出3(m-n)+4(3m+2n)+2的值.

分析 (1)把m的值代入原式计算即可得到结果;
(2)把已知等式代入原式计算即可得到结果;
(3)原式去括号整理后,将已知等式代入计算即可求出值.

解答 解:(1)把m=-3代入得:原式=$\frac{2}{3}$×9+1=6+1=7;
(2)把m+n=-3代入得:原式=$\frac{2×9}{3}$+1=6+1=7;
(3)原式=3m-3n+12m+8n+2=15m+5n+2=5(3m+n)+2,
把3m+n=2代入得:原式=10+2=12.
故答案为:(1)7;(2)7

点评 此题考查了整式的加减-化简求值,以及代数式求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网