题目内容
17.有四张卡片,正面上分别标有数字-1,0,1,2,它们除所标数字不同外,其他都完全相同,现把这四张牌扣在桌面上,背面朝上,洗匀后随机抽取一张记下卡上数字后放回桌面洗匀,再随机抽取一张,记下卡上数字,以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标的点落在第一象限的概率是( )| A. | $\frac{1}{6}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{3}$ |
分析 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点落在第一象限的情况,再利用概率公式即可求得答案.
解答 解:画树状图得:![]()
∵共有16种等可能的结果,点落在第一象限的有4种情况,
∴点落在第一象限的概率是:$\frac{4}{16}$=$\frac{1}{4}$.
故选C.
点评 此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关题目