题目内容

如图,在平面直角坐标系中有三个点A(-3,2)、B(-5,1)、C(-2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经平移后得到△A1B1C1,点P的对应点为P1(a+6,b+2).
(1)画出△ABC和△A1B1C1
(2)求△A1B1C1的面积.
考点:作图-平移变换
专题:作图题
分析:(1)根据网格结构找出点A、B、C的位置,然后顺次连接即可,再根据点P、P1的坐标确定出变化规律,然后找出点A1、B1、C1的位置,然后顺次连接即可;
(2)利用三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.
解答:解:(1)△ABC和△A1B1C1如图所示;

(2)S△A1B1C1=3×2-
1
2
×1×2-
1
2
×1×2-
1
2
×1×3
=6-1-1-1.5
=6-3.5
=2.5.
点评:本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网