题目内容

7.用加减法解方程组:
(1)$\left\{\begin{array}{l}{2x+y=8}\\{x-y=1}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x+3y=-1}\\{3x-2y=8}\end{array}\right.$
(3)$\left\{\begin{array}{l}{4x-3y=11}\\{2x+y=13}\end{array}\right.$
(4)$\left\{\begin{array}{l}{x+y=3}\\{5x-3(x+y)=1}\end{array}\right.$.

分析 (1)利用加减法即可求解;
(2)把x的系数化成相等,然后两式相减求得y,则x即可求得;
(3)利用加减法即可求解;
(4)首先把方程组中的第二个方程化简成一般形式,然后利用加减法即可求解.

解答 解:(1)$\left\{\begin{array}{l}{2x+y=-8…①}\\{x-y=-1…②}\end{array}\right.$,
①+②得3x=-9,
解得x=-3,
把x=-3代入方程②得-3-y=-1,
解得y=-2,
则方程组的解是$\left\{\begin{array}{l}{x=-3}\\{y=-2}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x+3y=-1…①}\\{3x-2y=8…②}\end{array}\right.$,
①×3-②得11y=-11,
解得y=-1,
把y=-1代入①得x-3=-1,
解得x=2,
则方程组的解是$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{4x-3y=11…①}\\{2x+y=13…②}\end{array}\right.$,
①+②×3得10x=50,
解得x=5,
把x=5代入②得10+y=13,
解得y=3,
则方程组的解是$\left\{\begin{array}{l}{x=5}\\{y=3}\end{array}\right.$;
(4)$\left\{\begin{array}{l}{x+y=3…①}\\{5x-3(x+y)=1…②}\end{array}\right.$,
整理②得2x-3y=1…③,
①×2-③得5y=5,
解得y=1,
把y=1代入①得x+1=3,
解得x=2,
则方程组的解是$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$.

点评 本题考查二元一次方程组的解法,解方程组的基本思想是消元、消元的方法有代入消元法和加减消元法两种.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网