题目内容

4.阅读下列材料:
小明同学遇到下列问题:
解方程组$\left\{{\begin{array}{l}{\frac{2x+3y}{4}+\frac{2x-3y}{3}=7}\\{\frac{2x+3y}{3}+\frac{2x-3y}{2}=8}\end{array}}\right.$,他发现如果直接用代入消元法或加减消元法求解,运算量比较大,也容易出错.如果把方程组中的(2x+3y)看作一个数,把(2x-3y)看作一个数,通过换元,可以解决问题.以下是他的解题过程:
令m=2x+3y,n=2x-3y.
这时原方程组化为$\left\{\begin{array}{l}\frac{m}{4}+\frac{n}{3}=7\\ \frac{m}{3}+\frac{n}{2}=8.\end{array}\right.$解得$\left\{{\begin{array}{l}{m=60}\\{n=-24}\end{array}}\right.$
把$\left\{{\begin{array}{l}{m=60}\\{n=-24}\end{array}}\right.$代入m=2x+3y,n=2x-3y.
得$\left\{{\begin{array}{l}{2x+3y=60}\\{2x-3y=-24}\end{array}}\right.$解得 $\left\{{\begin{array}{l}{x=9}\\{y=14}\end{array}}\right.$
所以,原方程组的解为$\left\{{\begin{array}{l}{x=9}\\{y=14}\end{array}}\right.$
请你参考小明同学的做法,解决下面的问题:
(1)解方程组$\left\{\begin{array}{l}\frac{x+y}{6}+\frac{x-y}{10}=3\\ \frac{x+y}{6}-\frac{x-y}{10}=-1.\end{array}\right.$
(2)若方程组$\left\{\begin{array}{l}{a_1}x+{b_1}y={c_{1,}}\\{a_2}x+{b_2}y={c_{2.}}\end{array}\right.$的解是$\left\{\begin{array}{l}x=3\\ y=2.\end{array}\right.$,求方程组$\left\{\begin{array}{l}\frac{5}{6}{a_1}x+\frac{1}{3}{b_1}y={c_{1,}}\\ \frac{5}{6}{a_2}x+\frac{1}{3}{b_2}y={c_2}.\end{array}\right.$的解.

分析 (1)令m=$\frac{x+y}{6}$,n=$\frac{x-y}{10}$,将方程组整理后,仿照阅读材料中的解法求出解即可;
(2)令m=$\frac{5}{6}$x,n=$\frac{1}{3}$y,将方程组整理后,仿照阅读材料中的解法求出解即可.

解答 解:(1)令m=$\frac{x+y}{6}$,n=$\frac{x-y}{10}$,
原方程组可化为$\left\{\begin{array}{l}m+n=3\\ m-n=-1.\end{array}\right.$,
解得:$\left\{\begin{array}{l}m=1\\ n=2.\end{array}\right.$,
∴$\left\{\begin{array}{l}\frac{x+y}{6}=1\\ \frac{x-y}{10}=2.\end{array}\right.$,
解得$\left\{\begin{array}{l}x=13\\ y=-7.\end{array}\right.$
∴原方程组的解为$\left\{\begin{array}{l}x=13\\ y=-7.\end{array}\right.$;
(2)令m=$\frac{5}{6}$x,n=$\frac{1}{3}$y,
原方程组可化为$\left\{\begin{array}{l}{a_1}m+{b_1}n={c_1}\\{a_2}m+{b_2}n={c_2}.\end{array}\right.$,
依题意,得$\left\{\begin{array}{l}m=3\\ n=2.\end{array}\right.$,
∴$\left\{\begin{array}{l}\frac{5}{6}x=3\\ \frac{1}{3}y=2.\end{array}\right.$,
解得$\left\{\begin{array}{l}x=\frac{18}{5}\\ y=6.\end{array}\right.$.

点评 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网