题目内容

18.如图,已知⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.
(1)判断AG与⊙O的位置关系,并说明理由.
(2)若AC=6,AB=8,BE=3,求线段OE的长.

分析 (1)连接OA,由EF⊥BC得出∠ABO+∠BEF=90°,由等边对等角得出∠ABO=∠BAO,∠GEA=∠GAE,所以∠BAO+∠GAE=∠ABO+∠BEF=90°,即可证得AG与⊙O相切.
(2)根据勾股定理求得BC=10,然后根据△BEF∽△BCA.对应边成比例求得EF=1.8,BF=2.4,进而求得OF=2.6,应用勾股定理求得即可.

解答 (1)AG与⊙O相切.
证明:如图 连接OA,
∵OA=OB,GA=GE,
∴∠ABO=∠BAO,∠GEA=∠GAE.
∵EF⊥BC,
∴∠BFE=90°.
∴∠ABO+∠BEF=90°.
又∵∠BEF=∠GEA,
∴∠GAE=∠BEF.
∴∠BAO+∠GAE=90°.
∴OA⊥AG,即AG与⊙O相切.
(2)解:∵BC为直径,
∴∠BAC=90°.
∵AC=6,AB=8,
∴BC=10.
∵∠EBF=∠CBA,∠BFE=∠BAC,
∴△BEF∽△BCA.
∴$\frac{BF}{BA}$=$\frac{BE}{BC}$=$\frac{EF}{CA}$.
∴EF=1.8,BF=2.4,
∴OF=OB-BF=5-2.4=2.6.
∴OE=$\sqrt{EF^2+OF^2}$=$\sqrt{10}$.

点评 本题考查了等腰三角形的性质,切线的判定,勾股定理的应用,三角形相似的判定和性质等,熟练掌握性质定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网