ÌâÄ¿ÄÚÈÝ
18£®Ä³É̵êͨ¹ýµ÷µÍ¼Û¸ñµÄ·½Ê½´ÙÏún¸ö²»Í¬µÄÍæ¾ß£¬µ÷ÕûºóµÄµ¥¼Ûy£¨Ôª£©Óëµ÷ÕûǰµÄµ¥¼Ûx£¨Ôª£©Âú×ãÒ»´Îº¯Êý¹ØÏµ£¬Èç±í£º| µÚ1¸ö | µÚ2¸ö | µÚ3¸ö | µÚ4¸ö | ¡ | µÚn¸ö | |
| µ÷ÕûǰµÄµ¥¼Ûx£¨Ôª£© | x1 | x2=6 | x3=72 | x4 | ¡ | xn |
| µ÷ÕûºóµÄµ¥¼Ûy£¨Ôª£© | y1 | y2=4 | y3=59 | y4 | ¡ | yn |
£¨1£©ÇóyÓëxµÄº¯Êý¹ØÏµÊ½£¬²¢È·¶¨xµÄȡֵ·¶Î§£»
£¨2£©Ä³¸öÍæ¾ßµ÷Õûǰµ¥¼ÛÊÇ108Ôª£¬¹Ë¿Í¹ºÂòÕâ¸öÍæ¾ßÊ¡Á˶àÉÙÇ®£¿
£¨3£©Õân¸öÍæ¾ßµ÷Õûǰ¡¢ºóµÄƽ¾ùµ¥¼Û·Ö±ðΪ$\overline{x}$£¬$\overline{y}$£¬²ÂÏë$\overline{y}$Óë$\overline{x}$µÄ¹ØÏµÊ½£¬²¢Ð´³öÍÆµ¼¹ý³Ì£®
·ÖÎö £¨1£©Éèy=kx+b£¬¸ù¾ÝÌâÒâÁз½³Ì×é¼´¿ÉµÃµ½½áÂÛ£¬ÔÙ¸ù¾ÝÒÑÖªÌõ¼þµÃµ½²»µÈʽÓÚÊǵõ½xµÄȡֵ·¶Î§ÊÇx£¾$\frac{18}{5}$£»
£¨2£©½«x=108´úÈëy=$\frac{5}{6}$x-1¼´¿ÉµÃµ½½áÂÛ£»
£¨3£©ÓÉ£¨1£©µÃy1=$\frac{5}{6}$x1-1£¬y2=$\frac{5}{6}$x2-2£¬¡yn=$\frac{5}{6}$xn-1£¬¸ù¾ÝÇ󯽾ùÊýµÄ¹«Ê½¼´¿ÉµÃµ½½áÂÛ£®
½â´ð ½â£º£¨1£©Éèy=kx+b£¬ÓÉÌâÒâµÃx=6£¬y=4£¬x=72£¬y=59£¬
¡à$\left\{\begin{array}{l}{4=6k+b}\\{59=72k+b}\end{array}\right.$
£¬½âµÃ$\left\{\begin{array}{l}{k=\frac{5}{6}}\\{b=-1}\end{array}\right.$£¬
¡àyÓëxµÄº¯Êý¹ØÏµÊ½Îªy=$\frac{5}{6}$x-1£¬
¡ßÕân¸öÍæ¾ßµ÷ÕûºóµÄµ¥¼Û¶¼´óÓÚ2Ôª£¬
¡à$\frac{5}{6}$x-1£¾2£¬½âµÃx£¾$\frac{18}{5}$£¬
¡àxµÄȡֵ·¶Î§ÊÇx£¾$\frac{18}{5}$£»
£¨2£©½«x=108´úÈëy=$\frac{5}{6}$x-1µÃy=$\frac{5}{6}$¡Á108-1=89£¬
108-89=19£¬
´ð£º¹Ë¿Í¹ºÂòÕâ¸öÍæ¾ßÊ¡ÁË19Ôª£»
£¨3£©$\overline{y}$=$\frac{5}{6}$$\overline{x}$-1£¬
ÍÆµ¼¹ý³Ì£ºÓÉ£¨1£©µÃy1=$\frac{5}{6}$x1-1£¬y2=$\frac{5}{6}$x2-1£¬¡yn=$\frac{5}{6}$xn-1£¬
¡à$\overline{y}$=$\frac{1}{n}$£¨y1+y2+¡+yn£©=$\frac{1}{n}$[£¨$\frac{5}{6}$x1-1£©+£¨$\frac{5}{6}$x2-1£©+¡+£¨$\frac{5}{6}$xn-1£©]=$\frac{1}{n}$[$\frac{5}{6}$£¨x1+x2+¡+xn£©-n]=$\frac{5}{6}$¡Á$\frac{{x}_{1}+{x}_{2}+¡+{x}_{n}}{n}$-1=$\frac{5}{6}$$\overline{x}$-1£®
µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄÓ¦Óã¬Çóº¯ÊýµÄ½âÎöʽ£¬Êì¼ÇÒ»´Îº¯ÊýµÄÐÔÖÊÊǽâÌâµÄ¹Ø¼ü£®