题目内容

15.如图,在△ABC中,AD,AE分别是△ABC的高和角平分线.
(1)若∠B=30°,∠C=50°,求∠DAE的度数.
(2)若∠C>∠B,猜想∠DAE与∠C-∠B之间的数量关系,并直接写出结论.

分析 (1)先根据三角形内角和得到∠CAB=180°-∠B-∠C=100°,再根据角平分线与高线的定义得到∠CAE=$\frac{1}{2}$∠CAB=50°,∠ADC=90°,则∠CAD=90°-∠C=40°,然后利用∠DAE=∠CAE-∠CAD计算即可.
(2)根据题意可以用∠B和∠C表示出∠CAD和∠CAE,从而可以得到∠DAE与∠C-∠B的关系.

解答 解:∵∠ABC=30°,∠ACB=50°,
∴∠CAB=180°-∠B-∠C=100°,
∵AE是△ABC角平分线,
∴∠CAE=$\frac{1}{2}$∠CAB=50°,
∵AD是△ABC的高,
∴∠ADC=90°,
∴∠CAD=90°-∠C=40°,
∴∠DAE=∠CAE-∠CAD=50°-40°=10°.

(2)∠DAE=$\frac{1}{2}$(∠ACB-∠ABC),
理由:∵在△ABC中,AD,AE分别是△ABC的高和角平分线,
∴∠CAB=180°-∠B-∠C,∠CAD=90°-∠C,∠CAE=$\frac{1}{2}$(180°-∠B-∠C),
∴∠DAE=$\frac{1}{2}$(180°-∠B-∠C)-(90°-∠C)=$\frac{1}{2}$(∠C-∠B).

点评 本题考查三角形内角和定理、角的平分线的性质、直角三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网