题目内容

20.如图,在平面直角坐标系中,放置半径为1的圆,与两坐标轴相切,若该圆向x轴正方向滚动2016圈后(滚动时在x轴上不滑动),则该圆的圆心坐标为(  )
A.(4032π+1.0)B.(4032π+1.1)C.(4032π-1.0)D.(4032π-1.1)

分析 由题意可知,该圆每向x轴正方向滚动1圈后,圆心的横坐标向右平移1个圆的周长,纵坐标不变,依此得出该圆向x轴正方向滚动2016圈后该圆的圆心坐标.

解答 解:∵圆的半径为1,
∴圆的周长为2π×1=2π,
∵图中圆的圆心坐标为(1,1),
∴该圆向x轴正方向滚动2016圈后(滚动时在x轴上不滑动),该圆的圆心横坐标为2016×2π=4032π,纵坐标为1,即(4032π+1,1).
故选B.

点评 本题考查了规律型:点的坐标,圆的周长公式,得出该圆每向x轴正方向滚动1圈后,圆心的横坐标向右平移1个圆的周长,纵坐标不变的规律是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网