题目内容
9.分析 根据角平分线的定义有∠ABC=2∠1,∠ACB=2∠2,根据三角形内角和定理得2∠2+2∠1+∠A=180°,即有∠2+∠1=90°-$\frac{1}{2}$∠A,再根据三角形内角和定理得到∠2+∠1+∠BOC=180°,于是有∠BOC=90°+$\frac{1}{2}$∠A,即可得到∠BOC的度数,三角形外角的性质有∠FCD=∠D+∠DBC,∠ACF=∠ABC+∠A,则2∠D+2∠DBC=∠ABC+∠A,即可得到∠D=$\frac{1}{2}$∠A,于是得到∠D,然后根据三角形的内角和即可得到结论.
解答
解:∵BO平分∠ABC,CO平分∠ACB,
∴∠ABC=2∠1,∠ACB=2∠2,
又∵∠ABC+∠ACB+∠A=180°,
∴2∠2+2∠1+∠A=180°,
∴∠2+∠1=90°-$\frac{1}{2}$∠A,
又∵∠2+∠1+∠BOC=180°,
∴90°-$\frac{1}{2}$∠A+∠BOC=180°,
∴∠BOC=90°+$\frac{1}{2}$∠A,
而∠A=50°,
∴∠BOC=90°+$\frac{1}{2}$×60°=120°,
∵∠DCF=∠D+∠DBC,∠ACF=∠ABC+∠A,BD平分∠ABC,DC平分∠ACF,
∴∠ACF=2∠DCF,∠ABC=2∠DBC,
∴2∠D+2∠DBC=∠ABC+∠A,
∴2∠D=∠A,即∠D=$\frac{1}{2}$∠A.
∵∠A=60°,
∴∠D=30°,
∵BE平分∠ABC相邻外角,BD平分∠ABC,
∴∠DBE=90°,
∴∠E=90°-∠D=60°,
故答案为:120°,30°60°.
点评 本题考查了角平分线定义,三角形内角和定理的应用,熟知三角形的内角和等于180°是解答此题的关键.
练习册系列答案
相关题目
20.
如图,在平面直角坐标系中,放置半径为1的圆,与两坐标轴相切,若该圆向x轴正方向滚动2016圈后(滚动时在x轴上不滑动),则该圆的圆心坐标为( )
| A. | (4032π+1.0) | B. | (4032π+1.1) | C. | (4032π-1.0) | D. | (4032π-1.1) |