题目内容

17.如图,四边形ABCD的对角线AC,BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.
求证:四边形ABCD是平行四边形.

分析 利用对角线互相平分的四边形是平行四边形证明即可.

解答 证明:∵点O是AC中点,
∴OA=OC,
∵AE=CF,
∴OE=OF,
∵DF∥BE,
∴∠OEB=∠OFE,
在△BOE和△DOF中$\left\{\begin{array}{l}{∠OEB=∠OFD}\\{∠BOE=∠DOF}\\{OE=OF}\end{array}\right.$,
∴△BOE≌△DOF,
∴OD=OB,
∴四边形ABCD是平行四边形.

点评 此题是平行四边形的判定,主要考查了线段的中点,平行线的性质,全等三角形的判定和性质,解本题的关键是判断△BOE≌△DOF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网