ÌâÄ¿ÄÚÈÝ
15£®£¨1£©Ö±½Óд³öµãAµÄ×ø±ê
£¨2£©Çó³öÇòµÄ·ÉÐзÏßËùÔÚÅ×ÎïÏߵĽâÎöʽ
£¨3£©Ö±½ÓÅжÏСÃ÷ÕâÒ»¸ËÄÜ·ñ°Ñ¸ß¶û·òÇò´ÓOµãÖ±½Ó´òÈëÇò¶´Aµã£®
·ÖÎö £¨1£©ÀûÓÃ30¡ãËù¶ÔµÄÖ±½Ç±ßÊÇб±ßµÄÒ»°ëÇó³öAC£¬ÔÙ¸ù¾Ý¹´¹É¶¨ÀíÇóOC£¬Ð´³öµãAµÄ×ø±ê£»
£¨2£©¸ù¾Ý¶¥µã×ø±êºÍ¹ýÔµãÇó³öÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©°ÑµãAµÄºá×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽÖУ¬Èç¹ûyÖµÓë$\frac{6}{5}$ÏàµÈ£¬ÔòÄܽøÈëAµã£»·ñÔò£¬²»ÄÜ´òÈëÇò¶´Aµã£®
½â´ð ½â£º£¨1£©ÔÚRt¡÷AOCÖУ¬¡ß¡ÏAOC=30¡ã£¬OA=$\frac{12}{5}$£¬
¡àAC=$\frac{6}{5}$£¬
Óɹ´¹É¶¨ÀíµÃ£ºOC=$\sqrt{O{A}^{2}-A{C}^{2}}$=$\sqrt{£¨\frac{12}{5}£©^{2}-£¨\frac{6}{5}£©^{2}}$=$\frac{6\sqrt{3}}{5}$£¬
¡àA£¨$\frac{6\sqrt{3}}{5}$£¬$\frac{6}{5}$£©£»
£¨2£©ÓÉÌâÒâµÃ£º¶¥µãB£¨9£¬12£©£¬ÇÒÅ×ÎïÏß¹ýԵ㣬
ËùÒÔÉèÅ×ÎïÏߵĽâÎöʽΪ£ºy=a£¨x-9£©2+12£¬
°Ñ£¨0£¬0£©´úÈëµÃ£º0=a£¨0-9£©2+12£¬
a=-$\frac{4}{27}$£¬
¡àÇòµÄ·ÉÐзÏßËùÔÚÅ×ÎïÏߵĽâÎöʽΪ£ºy=-$\frac{4}{27}$£¨x-9£©2+12£»
£¨3£©µ±x=$\frac{6\sqrt{3}}{5}$ʱ£¬y=-$\frac{4}{27}$£¨$\frac{6\sqrt{3}}{5}$-9£©2+12¡Ù$\frac{6}{5}$£¬
¡àСÃ÷ÕâÒ»¸Ë²»ÄܰѸ߶û·òÇò´ÓOµãÖ±½Ó´òÈëÇò¶´Aµã£®
µãÆÀ ±¾ÌâÊǶþ´Îº¯ÊýµÄÓ¦Ó㬿¼²éÁËÀûÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£¬Ó뼸ºÎÖеÄÖ±½ÇÈý½ÇÐÎÖÐ30¡ã½ÇËù¶ÔµÄÖ±½Ç±ßÊÇб±ßµÄÒ»°ëÏà½áºÏ£¬²¢ÀûÓù´¹É¶¨ÀíÇó±ß³¤£¬±íʾµãµÄ×ø±ê£»²¢ÄÜÅжϸõãÊÇ·ñÔÚÅ×ÎïÏßÉÏ£®