题目内容

16.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为(  )
A.x2-6=(10-x)2B.x2-62=(10-x)2C.x2+6=(10-x)2D.x2+62=(10-x)2

分析 根据题意画出图形,设折断处离地面的高度为x尺,再利用勾股定理列出方程即可.

解答 解:如图,设折断处离地面的高度为x尺,则AB=10-x,BC=6,
在Rt△ABC中,AC2+BC2=AB2,即x2+62=(10-x)2
故选D.

点评 本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合的思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网