题目内容
19.解方程组①$\left\{\begin{array}{l}{4x-3y=11}\\{2x+y=13}\end{array}\right.$
②$\left\{\begin{array}{l}{x+y=3}\\{x-y=-1}\end{array}\right.$.
分析 ①方程组利用加减消元法求出解即可;
②方程组利用加减消元法求出解即可.
解答 解:①$\left\{\begin{array}{l}{4x-3y=11①}\\{2x+y=13②}\end{array}\right.$,
①+②×3得:10x=50,即x=5,
把x=5代入②得:y=3,
则方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=3}\end{array}\right.$;
②$\left\{\begin{array}{l}{x+y=3①}\\{x-y=-1②}\end{array}\right.$,
①+②得:2x=2,即x=1,
①-②得:2y=4,即y=2,
则方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
10.已知2a-y+5b3x与-5a2xb2+4y是同类项,则( )
| A. | $\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$ |