ÌâÄ¿ÄÚÈÝ
1£®Èç¹û½«¶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}2x+\begin{array}{l}{\begin{array}{l}{\;}¡ö{y=3}\end{array}}\end{array}\\ \begin{array}{l}{\;}¡ö{x+y=3}\end{array}\end{array}\right.$£¬µÄµÚÒ»¸ö·½³ÌÖÐyµÄϵÊýÕÚס£¬µÚ¶þ¸ö·½³ÌÖÐxµÄϵÊýÕÚס£¬²¢ÇÒ$\left\{\begin{array}{l}x=2\\ y=1\end{array}\right.$ÊÇÕâ¸ö·½³Ì×éµÄ½â£¬ÄãÄÜÇó³öÔ·½³Ì×éÂ𣿷ÖÎö ÉèyµÄϵÊýΪa£¬xµÄϵÊýΪb£¬°Ñ$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$´úÈë·½³Ì×é$\left\{\begin{array}{l}{2x+ay=3}\\{bx+y=3}\end{array}\right.$µÃ³ö$\left\{\begin{array}{l}{4+a=3}\\{2b+1=3}\end{array}\right.$£¬Çó³ö·½³Ì×éµÄ½â£¬¼´¿ÉµÃ³ö´ð°¸£®
½â´ð ½â£ºÉèyµÄϵÊýΪa£¬xµÄϵÊýΪb£¬
°Ñ$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$´úÈë·½³Ì×é$\left\{\begin{array}{l}{2x+ay=3}\\{bx+y=3}\end{array}\right.$µÃ£º$\left\{\begin{array}{l}{4+a=3}\\{2b+1=3}\end{array}\right.$£¬
½âµÃ£ºa=-1£¬b=1£¬
ËùÒÔÔ·½³Ì×éΪ$\left\{\begin{array}{l}2x-y=3\\ x+y=3\end{array}\right.$£®
µãÆÀ ±¾Ì⿼²éÁ˶þÔªÒ»´Î·½³Ì×éµÄ½â£¬½â¶þÔªÒ»´Î·½³Ì×éµÄÓ¦Óã¬ÄÜÀí½â¶þÔªÒ»´Î·½³Ì×é½âµÄ¶¨ÒåÊǽâ´ËÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
11£®
Èçͼ£¬µÈ±ß¡÷ABCÑØÉäÏßBCÏòÓÒÆ½ÒƵ½¡÷DCEµÄλÖã¬Á¬½ÓAD£¬BD£¬ÔòÏÂÁнáÂÛ£º
¢ÙAD=BC=CE£»
¢ÚBD£¬AC»¥ÏàÆ½·Ö£»
¢ÛËıßÐÎACEDÊÇÁâÐΣ»
¢ÜËıßÐÎABEDµÄÃæ»ýΪ$\frac{3\sqrt{3}}{4}$AB2£®
ÆäÖÐÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
¢ÙAD=BC=CE£»
¢ÚBD£¬AC»¥ÏàÆ½·Ö£»
¢ÛËıßÐÎACEDÊÇÁâÐΣ»
¢ÜËıßÐÎABEDµÄÃæ»ýΪ$\frac{3\sqrt{3}}{4}$AB2£®
ÆäÖÐÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
| A£® | 4¸ö | B£® | 3¸ö | C£® | 2¸ö | D£® | 1¸ö |
9£®ÏÂÁг¤¶ÈµÄ¸÷×éÏß¶ÎÄÜ×é³ÉÒ»¸öÈý½ÇÐεÄÊÇ£¨¡¡¡¡£©
| A£® | 3cm£¬5cm£¬8cm | B£® | 1cm£¬2cm£¬3cm | C£® | 4cm£¬5cm£¬10cm | D£® | 3cm£¬4cm£¬5cm |