题目内容
20.解方程组:(1)$\left\{\begin{array}{l}{2x-y=-4}\\{4x-5y=-23}\end{array}\right.$
(2)$\left\{\begin{array}{l}{9x-11y+1=0}\\{4x-5y-3=0}\end{array}\right.$.
分析 (1)方程组利用加减消元法求出解即可;
(2)方程组利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{2x-y=-4①}\\{4x-5y=-23②}\end{array}\right.$,
①×2-②得:3y=15,
解得:y=5,
把y=5代入①得:x=$\frac{1}{2}$,
则方程组的解为$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=5}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{9x-11y=-1①}\\{4x-5y=3②}\end{array}\right.$,
①×4-②×9得:y=-31,
把y=-31代入②得:x=-38,
则方程组的解为$\left\{\begin{array}{l}{x=-38}\\{y=-31}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
11.下列各组中,不是二元一次方程3x+y=7的解的是( )
| A. | $\left\{\begin{array}{l}x=1\\ y=4\end{array}\right.$ | B. | $\left\{\begin{array}{l}x=0\\ y=7\end{array}\right.$ | C. | $\left\{\begin{array}{l}x=3\\ y=-2\end{array}\right.$ | D. | $\left\{\begin{array}{l}x=1.5\\ y=3.5\end{array}\right.$ |
8.
如图,在周长为10cm的?ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD于E,则△ABE的周长为( )
| A. | 5cm | B. | 4cm | C. | 3cm | D. | 2cm |
15.如果$\sqrt{a+2}$有意义,那么( )
| A. | a≥-2 | B. | a≤2 | C. | a≥2 | D. | a≤-2 |